Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthropod Struct Dev ; 79: 101346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520874

RESUMO

The large abundance of termites is partially achieved by their defensive abilities. Stylotermitidae represented by a single extant genus, Stylotermes, is a member of a termite group Neoisoptera that encompasses 83% of termite species and 94% of termite genera and is characterized by the presence of the frontal gland. Within Neoisoptera, Stylotermitidae represents a species-poor sister lineage of all other groups. We studied the structure of the frontal, labral and labial glands in soldiers and workers of Stylotermes faveolus, and the composition of the frontal gland secretion in S. faveolus and Stylotermes halumicus. We show that the frontal gland is a small active secretory organ in soldiers and workers. It produces a cocktail of monoterpenes in soldiers, and some of these monoterpenes and unidentified proteins in workers. The labral and labial glands are developed similarly to other termite species and contribute to defensive activities (labral in both castes, labial in soldiers) or to the production of digestive enzymes (labial in workers). Our results support the importance of the frontal gland in the evolution of Neoisoptera. Toxic, irritating and detectable monoterpenes play defensive and pheromonal functions and are likely critical novelties contributing to the ecological success of these termites.


Assuntos
Baratas , Isópteros , Animais , Feromônios/metabolismo , Monoterpenos/metabolismo
2.
Front Microbiol ; 14: 1281628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033561

RESUMO

Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.

3.
J Chem Ecol ; 49(11-12): 642-651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566284

RESUMO

Stylotermitidae appear peculiar among all termites, feeding in trunks of living trees in South Asia only. The difficulty to collect them limits the ability to study them, and they thus still belong to critically unknown groups in respect to their biology. We used a combination of microscopic observations, chemical analysis and behavioural tests, to determine the source and chemical nature of the trail-following pheromone of Stylotermes faveolus from India and S. halumicus from Taiwan. The sternal gland located at the 5th abdominal segment was the exclusive source of the trail-following pheromone in both S. faveolus and S. halumicus, and it is made up of class I, II and III secretory cells. Using gas chromatography coupled mass spectrometry, (3Z)-dodec-3-en-1-ol (DOE) was identified as the trail-following pheromone which elicits strong behavioural responses in workers at a threshold around 10- 4 ng/cm and 0.1 ng/gland. Our results confirm the switch from complex aldehyde trail-following pheromones occurring in the basal groups to simpler linear alcohols in the ancestor of Kalotermitidae and Neoisoptera.


Assuntos
Comunicação Animal , Baratas , Feromônios , Animais , Cromatografia Gasosa-Espectrometria de Massas , Feromônios/química
4.
Proc Biol Sci ; 290(2001): 20230619, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339742

RESUMO

Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Filogenia , Simbiose , Bactérias/genética , Mamíferos
5.
Appl Environ Microbiol ; 89(5): e0036123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067424

RESUMO

The decomposition of wood and detritus is challenging to most macroscopic organisms due to the recalcitrant nature of lignocellulose. Moreover, woody plants often protect themselves by synthesizing toxic or nocent compounds which infuse their tissues. Termites are essential wood decomposers in warmer terrestrial ecosystems and, as such, they have to cope with high concentrations of plant toxins in wood. In this paper, we evaluated the influence of wood age on the gut microbial (bacterial and fungal) communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) (Kollar, 1837) and Microcerotermes biroi (Termitidae) (Desneux, 1905). We confirmed that the secondary metabolite concentration decreased with wood age. We identified a core microbial consortium maintained in the gut of R. flavipes and M. biroi and found that its diversity and composition were not altered by the wood age. Therefore, the concentration of secondary metabolites had no effect on the termite gut microbiome. We also found that both termite feeding activities and wood age affect the wood microbiome. Whether the increasing relative abundance of microbes with termite activities is beneficial to the termites is unknown and remains to be investigated. IMPORTANCE Termites can feed on wood thanks to their association with their gut microbes. However, the current understanding of termites as holobiont is limited. To our knowledge, no studies comprehensively reveal the influence of wood age on the termite-associated microbial assemblage. The wood of many tree species contains high concentrations of plant toxins that can vary with their age and may influence microbes. Here, we studied the impact of Norway spruce wood of varying ages and terpene concentrations on the microbial communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) and Microcerotermes biroi (Termitidae). We performed a bacterial 16S rRNA and fungal ITS2 metabarcoding study to reveal the microbial communities associated with R. flavipes and M. biroi and their impact on shaping the wood microbiome. We noted that a stable core microbiome in the termites was unaltered by the feeding substrate, while termite activities influenced the wood microbiome, suggesting that plant secondary metabolites have negligible effects on the termite gut microbiome. Hence, our study shed new insights into the termite-associated microbial assemblage under the influence of varying amounts of terpene content in wood and provides a groundwork for future investigations for developing symbiont-mediated termite control measures.


Assuntos
Isópteros , Madeira , Animais , Madeira/metabolismo , Ecossistema , Isópteros/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias/genética
6.
Arthropod Struct Dev ; 73: 101238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796136

RESUMO

The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus Verrucositermes is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of Verrucositermes tuberosus soldiers. We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise rough endoplasmic reticulum and Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources.


Assuntos
Baratas , Isópteros , Animais , Isópteros/ultraestrutura , Evolução Biológica , Epiderme
7.
Commun Biol ; 6(1): 83, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681783

RESUMO

Termites (Blattodea: Isoptera) have evolved specialized defensive strategies for colony protection. Alarm communication enables workers to escape threats while soldiers are recruited to the source of disturbance. Here, we study the vibroacoustic and chemical alarm communication in the wood roach Cryptocercus and in 20 termite species including seven of the nine termite families, all life-types, and all feeding and nesting habits. Our multidisciplinary approach shows that vibratory alarm signals represent an ethological synapomorphy of termites and Cryptocercus. In contrast, chemical alarms have evolved independently in several cockroach groups and at least twice in termites. Vibroacoustic alarm signaling patterns are the most complex in Neoisoptera, in which they are often combined with chemical signals. The alarm characters correlate to phylogenetic position, food type and hardness, foraging area size, and nesting habits. Overall, species of Neoisoptera have developed the most sophisticated communication system amongst termites, potentially contributing to their ecological success.


Assuntos
Baratas , Isópteros , Humanos , Animais , Filogenia , Comunicação , Etologia
8.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511685

RESUMO

Termites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of ∼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84 Ma (75-93 Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ∼40 disjunctions among biogeographic realms were dated at <50 Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.


Assuntos
Genoma Mitocondrial , Isópteros , Animais , Núcleo Celular , Ecossistema , Humanos , Isópteros/genética , Filogenia
9.
Mol Phylogenet Evol ; 173: 107520, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577300

RESUMO

The phylogenetic history of termites has been investigated using mitochondrial genomes and transcriptomes. However, both sets of markers have specific limitations. Mitochondrial genomes represent a single genetic marker likely to yield phylogenetic trees presenting incongruences with species trees, and transcriptomes can only be obtained from well-preserved samples. In contrast, ultraconserved elements (UCEs) include a great many independent markers that can be retrieved from poorly preserved samples. Here, we designed termite-specific baits targeting 50,616 UCE loci. We tested our UCE bait set on 42 samples of termites and three samples of Cryptocercus, for which we generated low-coverage highly-fragmented genome assemblies and successfully extracted in silico between 3,426 to 42,860 non-duplicated UCEs per sample. Our maximum likelihood phylogenetic tree, reconstructed using the 5,934 UCE loci retrieved from upward of 75% of samples, was congruent with transcriptome-based phylogenies, demonstrating that our UCE bait set is reliable and phylogenetically informative. Combined with non-destructive DNA extraction protocols, our UCE bait set provides the tool needed to carry out a global taxonomic revision of termites based on poorly preserved specimens such as old museum samples. The Termite UCE database is maintained at: https://github.com/oist/TER-UCE-DB/.


Assuntos
Isópteros , Animais , Marcadores Genéticos , Isópteros/genética , Filogenia , Transcriptoma
10.
Microbiome ; 10(1): 78, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624491

RESUMO

BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Solo
11.
Proc Biol Sci ; 289(1975): 20220246, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611530

RESUMO

Termites feed on vegetal matter at various stages of decomposition. Lineages of wood- and soil-feeding termites are distributed across terrestrial ecosystems located between 45°N and 45°S of latitude, a distribution they acquired through many transoceanic dispersal events. While wood-feeding termites often live in the wood on which they feed and are efficient at dispersing across oceans by rafting, soil-feeders are believed to be poor dispersers. Therefore, their distribution across multiple continents requires an explanation. Here, we reconstructed the historical biogeography and the ancestral diet of termites using mitochondrial genomes and δ13C and δ15N stable isotope measurements obtained from 324 termite samples collected in five biogeographic realms. Our biogeographic models showed that wood-feeders are better at dispersing across oceans than soil-feeders, further corroborated by the presence of wood-feeders on remote islands devoid of soil-feeders. However, our ancestral range reconstructions identified 33 dispersal events among biogeographic realms, 18 of which were performed by soil-feeders. Therefore, despite their lower dispersal ability, soil-feeders performed several transoceanic dispersals that shaped the distribution of modern termites.


Assuntos
Genoma Mitocondrial , Isópteros , Animais , Dieta , Ecossistema , Isópteros/genética , Solo
12.
Sci Rep ; 12(1): 1909, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115635

RESUMO

Timber suffers from various biological damages. Recent efforts aim on nature-friendly sustainable technologies of wood protection to replace classical synthetic agents having usually negative impact on many non-target organisms including man. This research investigated the biocidal effectiveness of lavender oil (LO) in protecting the Norway spruce (Picea abies) wood against the termites Reticulitermes flavipes and the brown-rot fungus Rhodonia placenta. Following, selected physical characteristics of spruce wood treated with LO were evaluated: colour changes, roughness, surface wetting with water and surface free energy (SFE). Experiments showed that LO increased the resistance of spruce wood to termites nearly to the level of its treatment with commercial biocide based on trivalent boron and quaternary ammonium salt. The additional hydrophobic treatment of wood ensured its full termite-resistance even after artificial weathering in Xenotest and leaching in water according to EN 84, respectively. It shows a high potential of LO to protect wood against termites. Adversely, the effectiveness of 5% LO against rot was not sufficient. The colour of the oil-treated wood was preserved, its roughness increased slightly, and wetting and SFE led to a positive change, improving the adhesion of potentially applied coatings or adhesives for exterior exposures.

13.
Arthropod Struct Dev ; 67: 101136, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35152166

RESUMO

Machadotermes is one of the basal Apicotermitinae genera, living in tropical West Africa. Old observations suggested the presence of a new gland, the intramandibular gland, in Machadotermes soldiers. Here, by combining micro-computed tomography, optical and electron microscopy, we showed that the gland exists in Machadotermes soldiers only as an active exocrine organ, consisting of numerous class III cells (bicellular units made of secretory and canal cells), within which the secretion is produced in rough endoplasmic reticulum, and modified and stored in Golgi apparatus. The final secretion is released out from the body through epicuticular canals running through the mandible cuticle to the exterior. We also studied three other Apicotermitinae, Indotermes, Duplidentitermes, and Jugositermes, in which this gland is absent. We speculate that the secretion of this gland may be used as a general protectant or antimicrobial agent. In addition, we observed that the frontal gland, a specific defensive organ in termites, is absent in Machadotermes soldiers while it is tiny in Indotermes soldiers and small in Duplidentitermes and Jugositermes soldiers. At last, we could also observe in all these species the labral, mandibular and labial glands, other exocrine glands present in all termite species studied so far.


Assuntos
Baratas , Isópteros , Animais , Glândulas Exócrinas/ultraestrutura , Isópteros/ultraestrutura , Microscopia Eletrônica de Transmissão , Microtomografia por Raio-X
14.
Mitochondrial DNA B Resour ; 6(2): 533-535, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33628917

RESUMO

We report the first complete mitochondrial genome of an important pest of timber, the drywood termite Cryptotermes havilandi. The gene content and synteny of the mitochondrial genome of C. havilandi is identical to that of other termite species reported to date. It is composed 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. Our phylogenetic tree, that includes the mitochondrial genomes of 14 species of Kalotermitidae, including C. havilandi, resolves the phylogenetic position of C. havilandi within Kalotermitidae.

15.
Proc Biol Sci ; 288(1945): 20203168, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33593190

RESUMO

The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence.


Assuntos
Baratas , Isópteros , Animais , Evolução Biológica , Isópteros/genética , Filogenia , Comportamento Social
16.
Cell Mol Life Sci ; 78(6): 2749-2769, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388854

RESUMO

Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.


Assuntos
Evolução Biológica , Isópteros/metabolismo , Animais , Celulose/metabolismo , Fósseis , Microbioma Gastrointestinal , Isópteros/classificação , Isópteros/genética , Filogenia , Simbiose
17.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33097518

RESUMO

All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria, which were often shared by several termite species. The abundance of several bacterial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities.IMPORTANCE As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on Rhizobiales and Actinobacteria abundance and negative effects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus Our results demonstrate that termite galleries harbor unique bacterial communities.


Assuntos
Bactérias/classificação , Isópteros/microbiologia , Microbiota , Animais , Bactérias/genética , Biodiversidade , RNA Ribossômico 16S/genética , Especificidade da Espécie
18.
Evolution ; 75(1): 141-148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196103

RESUMO

Larger species tend to feed on abundant resources, which nonetheless have lower quality or degradability, the so-called Jarman-Bell principle. The "eat more" hypothesis posits that larger animals compensate for lower quality diets through higher consumption rates. If so, evolutionary shifts in metabolic scaling should affect the scope for this compensation, but whether this has happened is unknown. Here, we investigated this issue using termites, major tropical detritivores that feed along a humification gradient ranging from dead plant tissue to mineral soil. Metabolic scaling is shallower in termites with pounding mandibles adapted to soil-like substrates than in termites with grinding mandibles adapted to fibrous plant tissue. Accordingly, we predicted that only larger species of the former group should have more humified, lower quality diets, given their higher scope to compensate for such a diet. Using literature data on 65 termite species, we show that diet humification does increase with body size in termites with pounding mandibles, but is weakly related to size in termites with grinding mandibles. Our findings suggest that evolution of metabolic scaling may shape the strength of the Jarman-Bell principle.


Assuntos
Evolução Biológica , Tamanho Corporal , Dieta , Isópteros/genética , Animais , Isópteros/metabolismo , Mandíbula
19.
Ecol Evol ; 10(18): 10095-10104, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005366

RESUMO

Cuticular hydrocarbons (CHCs) have, in insects, important physiological and ecological functions, such as protection against desiccation and as semiochemicals in social taxa, including termites. CHCs are, in termites, known to vary qualitatively and/or quantitatively among species, populations, castes, or seasons. Changes to hydrocarbon profile composition have been linked to varying degrees of aggression between termite colonies, although the variability of results among studies suggests that additional factors might have been involved. One source of such variability may be colony age, as termite colony demographics significantly change over time, with different caste and instar compositions throughout the life of the colony. We here hypothesize that the intracolonial chemical profile heterogeneity would be high in incipient termite colonies but would homogenize over time as a colony ages and accumulates older workers in improved homeostatic conditions. We studied caste-specific patterns of CHC profiles in Coptotermes gestroi colonies of four different age classes (6, 18, 30, and 42 months). The CHC profiles were variable among castes in the youngest colonies, but progressively converged toward a colony-wide homogenized chemical profile. Young colonies had a less-defined CHC identity, which implies a potentially high acceptance threshold for non-nestmates conspecifics in young colonies. Our results also suggest that there was no selective pressure for an early-defined colony CHC profile to evolve in termites, potentially allowing an incipient colony to merge nonagonistically with another conspecific incipient colony, with both colonies indirectly and passively avoiding mutual destruction as a result.

20.
J Chem Ecol ; 46(5-6): 475-482, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529331

RESUMO

Trail-following behavior is a key to ecological success of termites, allowing them to orient themselves between the nesting and foraging sites. This behavior is controlled by specific trail-following pheromones produced by the abdominal sternal gland occurring in all termite species and developmental stages. Trail-following communication has been studied in a broad spectrum of species, but the "higher" termites (i.e. Termitidae) from the subfamily Syntermitinae remain surprisingly neglected. To fill this gap, we studied the trail-following pheromone in six genera and nine species of Syntermitinae. Our chemical and behavioral experiments showed that (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol is the single component of the pheromone of all the termite species studied, except for Silvestritermes euamignathus. This species produces both (3Z,6Z)-dodeca-3,6-dien-1-ol and neocembrene, but only (3Z,6Z)-dodeca-3,6-dien-1-ol elicits trail-following behavior. Our results indicate the importance of (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol, the most widespread communication compound in termites, but also the repeated switches to other common pheromones as exemplified by S. euamignathus.


Assuntos
Isópteros/fisiologia , Feromônios/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...